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ABSTRACT

Several alternate sets of parameters that represent the

linear predictor are investiqated as transmission parameters
; for linear predictive speech compression systems. Although

each of these sets provides equivalent information about the
: linear predictor, their propnerties under quantizatior are
different. The 1results of a comparative studvy of the
various parameter sets are reported. Specificallvy it is
concluded that the reflection coefficients are the best set
for use as transmission parameters. A more detailed
investigation of the quantization pronerties of the
reflection coefficients is then carried out using a spectral
sensitivity measure. A method of ontimally quantizing the
reflection coefficients is also derived. Using this method
it is demonstrated that logarithms of the ratios of the
familiar area functions possess approximately optimal
quantization promerties. Also, a solution to the problem of
bit allocation among the various parameters is presented,

based on the sensitivitv measure.

The use of anothcr spectral sensitivity measure renders
logarithms of the ratios of normalized errors associated
with linear predictors of successive orders as the ovntimal
quantization parameters. Informal listening tests indicate ,
that the use of log areca ratios for quantization leads to |

hetter synthesis than the use of log error ratios.
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I. INTRODUCTION

In recent years the method of linear prediction has
been ocquite successfully nsed in speech compression systems
(1] - [5]. 1In this method, speech is modeled by an all-pole
filter 1(z) as shown in Fig. 1. The input to the filter is
either a sequence of pulses scparated by the pitch period
for voiced sounds, or white noise for fricated (or unvoiced)
sounds. The parameters ak, l<k<p, are Kknown as the
predictor coefficients, and G 1is the filter gain. For a
particular specch seaqment the filter parameters are obtained
by passina the speech signal through the inverse filter A(z)
(as in Fig. 2) and then minimizing the total-squared

prediction error

E=12 e2 = I(s_+ g a, S )2 (1)
n n n onoyo k “n-k

with respect to a . If the signal Sh is assumed to be zcro
for n<0 and n>N (e.9g. bv multiplying it by a finite
window), the error minimization results in the set of

equations

I ™o

ay Rli'kl = -Ri , 1=1=p , (2)

k

1
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VOICED

FRICATED
(a) FREQUENCY - DOMAIN MODEL

LINEAR PREDICTOR
OF ORDER p

(b) TIME -DOMAIN MODEL

ved in

1. Discrete model of speech production as emplo
linear prediction.

Fig.
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:
P - e s + 20 S
$p—1 Alz)= 1 + !:c:kzk I—— L ! K L
k=1

Fig. 2. The error sequence e as the output of an inverse
filter A(z).
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where
N-|i|
R. = 1 s_ 8 : (3)
+
i n=0 n n |1|
is the autocorrelation function of the signal sn. The set

of equations (2) can be recursively solved for the predictor

coefficients a, as follows:

i-1 .
(i-1) o
ki = -(Ri + .Z a. Ri_j)/Ei_l ’ (4 b)
i=1
ail) = ki ’
(1) _ (i-1) (i-1) <j<i-1 (4-c)
ay” = ay +k; a5y 1=3=1 '
E. = (1-k%) E (4-d)
i i i-1 °

Equations (4-l,c,d) are solved recursively for i=1,2,...,P.

The final solution is given by

aj = a;p) ’ lijfp

. (4-e)
The filter H(z) with the predictor coefficients obtained
from (4) is always stable, i.e. the poles of H(z) lie

inside the unit circle in the z-plane. Since H(z) 1is an

all-pole filter, stability also implies that H(z) is minimum

l
l
f
|
|
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phase.

The intermediate quantities ki, l<i<p, in (4) are
called the reflection coefficients (or partial correlation
coefficients (3,10]). Reflection cocfficients occur
naturally in the treatment of the vocal tract as an acoustic
tube with p sections, each with a differcnt cross-scctional
area [2,9]. An important result that will be used in the

sequel is that the conditions
—1<ki<1 i l<is<p ,

are both necessary and sufficient for the stability of H(z).

The quantitv Ep obtained from (4) is the minimum value
of the prediction error given in (1). By expanding the
squared terms in (1) and using (2), it can be shown that the

minimum error is given by

Of interest also is the normalized ersor Vp which 1is the

ratio of the minimum error to the energv of the input speech

signal, i.e.
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From (4-a), (4-d) and (7) we obtain

p
v, = T (1-k%) . (8)
j=1 :

The gain G of the filter H(z) is obtained by conserving
the total enerqgy between the speech signal and the impulse

response of H(z). The gain can be shown to satisfy (6]
G2 =E =RV_=R+ I a_ R (9)
% Tk °

Equations (2), (3) and (9) completely specify the filter
parameters. It can be shown that (for a well chosen p) the
resulting linear prediction all-pole spectrum is a good

match to the envelope of the signal spectrum (6].

Above we assumed that the speech signal was multiplied
by a finite window. The shape of window is of importance if
the signal spectrum is to approximate the transfer function
of the wvocal tract. This issue is discussed in detail
elsewhere [7]. A smooth window such as the Hamming or

Hanning window is adequate.

When applving the linear prediction method to speech
compression, the model parameters - predictor coefficients,

gain and pitch frequency for voiced sourds - have to be
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extracted, quantized and transmitted to the receiver. The
rate of such parameter extraction is usually on the order of

50-100 Hz to follow the time-varying overall characteristics

of the input speec'. signal. At the receiver, speech is

reconstructed (or svnthesized) using the speech production

model given in Fig. 1.

The optimal choice and quantization of transmission
parameters is of prime importance if the resulting
synthesized speech is to be of good quality. In this paper,
several alternate sets of transmission parameters are
considered and their quantization properties are compared. *
This comparative studv has indicated that the reflection
coefficients possess manv desirable quantization properties.
An optimal method of quantizing the reflection coefficients
is derived usino a spectral sensitivity measure. The
sensitivity measure is also used for allocating a fixed
number of bits amonq the various parameters in an optimal
manner (in a minimax sense). Finally, the use of A second
spectral sensitivitv measure for the ontimal quantization of

the reflection coefficients is investigated.

*As the quantization properties of pitch and gain are
understood we have not considered them in this studv.

B . o a2 2 e A ™
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II. ALTERNATE TRANSMISSION PARAMETER SETS

The all-pole model used in a linear predictive system

has a transfer function

H(z) = K%ET . Zo h, 2" (10)
n=

where the inverse filter A(z) is given by

P -1
A(z) =1 + Zl a, z . (11)
n=

Given below is a list of possible sets of parameters for

characterizing uniquely the linear prediction filter H(z):

(1) Impulse response of the inverse filter A(z), 1i.e.
predictor coefficients a, l<ns=p.

(2) Impulse response of the all-pole model hn' 0=n<p,
which are easily obtained by long division. Note
that the first p+l coefficients uniquely specify
the filter.

(3) Autocorrelation coefficients of {an/G},

1Pl 1, 0<isp. (12
bi:?jio ay A54]1) ! ay=: v =izp. (12) |
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(4) Autocorrelation coefficients of {hn}

0<is . (13)

It can be shown that r is equal to Ri in (3) for
N<i<p [6,7]).

(5) Spectral coefficients of A(z)/G, P 0<i<p, (or

il

! equivalently spectral coefficients of H(z), 1/Pi)

2miA

5+ 1 0<isp ., (14)

P
P. = Db + 2 2 b. cos

where bj are as defined in (12). In words, {Pi}
is obtained from {b;} through a discrete Fourier
transform (DFT). Traditionally, vocoders that
transmit the spectrum at selected frequencies have
been known as channel vocoders. Thus, use of the
spectral coefficients as transmis sion parameters

leads to a linear prediction channel vocoder.

While in the classical channel vocoder different
channel signals are derived from contiguous
band-pass filters, in the 1linear predictinn
channel vocoder a selected set c€ p+l points from
the all-péle spectrum constitute the "channel

outputs.” The main advantage of the linear
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prediction channel vocoder, however, is that we
are able to regenerate exactly the all-pole
spectrum from a knowledge of the p+l spectral
coefficients, wunlike in the <classical channel
vocoder.

(6) Cepstral coefficients of A(z), ¢

n’ l<n=p, (or

equivalently cepstral coefficients of H(z) /G, -cn)

m . .

Since A(z) is minimum phase, we obtain wusing the

results given in (8, p. 24€]

c =a - 2 g-c a , lsn=p . (15)

(7) Poles of H(z) (or equivalently zeros of A(z)).

(8) Reflection coefficients ki' l=i<p, or simple
transformations thereof, e.g. area coefficients

[2,9]. The area coefficients are given hy

= 1 = 1<i=< o

Although the reflection coefficients are obtained

10
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as a bvoroduct of the solution in (4), they can
also be* computed directly from the predictor
coefficients using the following recursive

relations:

k, = agi)
1 1 . 2
¥ \
: agi)- as*) a-(*).
ali-1) o j _Ti-3 0 j<ysi-1, (D)
J 1 - k%
1

where the index i takes values p, p-l,...,1 1in

that order. Initially, a;P’= ajo lsjsp.

some of the ahove sets of parameters have p+l
coefficients while others  have only p coefficients.
However, for the latter sets the signal energy (or gain G)
needs to be transmitted, thus keeping the total number of
parameters as p+l for all the cases. Althoug': the above
sets provide equivalent information about the linear
predictor, their properties under auantization are
different. Certain aspects of the sets (1), (4), (7) and
(8) have been studied in the past [2,10]. Our purpose in
this paper 1is to investigate the relative quantization
properties of all these parameters with a particular

emphasis on the reflection coefficients.

11
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It should be emphasized that the predictor coefficients
can be recovered from any of the various sets of parameters
listed above. The required transformations for such a
recovery are qgiven below only for the sets (3), (5), (6) and

(8) since thev are well-known for the others.

The sequence {bi} is transformed through an FFT after
appending it with an appropriate number of zeros to achievn
sufficient resolution in the resulting spectrum of the
filter A(z)/G. The spectrum of the all-pole filter H(z) is
then obtained bv simplv inverting the amplitudes of the
computed spectrum. Inverse Fourier transformation of the
spectrum of H(z) vields autocorrelation coefficients {ri}
defined in (13). The first p+l autocorrelation coefficients
r

., O=<isp, are then used to compute the predictor
i

coefficients via the normal equations (2) with R;=r O0<i<p.

il

The predictor coefficients are recovered from the
spectral coefficients {Pj} bv first taking the inverse DFT
vf the sequence {Pi} to get the autocorrelation sequence

{by}. The process of getting the predictor cocfficients

from {bi} has been discussed above.

Rearranging (15) provides the necessary transformation

from cepstral coefficients to predictor coefficients:

a, = ¢ + 2 2 c, a , lsn<p . (18)

12
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Equations (15) and (18) also suggest the use of the modified
cepstral coefficients cn=ncr as possible transmission
parameters.

The predictor coefficients can be recovered from the
reflection coefficients using the relations (4-c) with

i=1,2,...p, then (4-e).

13
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IIT. PREPROCESSING METHODS

Before we discuss the quantization properties of the
different parameters ve should mention that such properties
can be improved by proper preprocessing, which 1is 1later
undone at the synthesizer. For each set of parameters (1-8
above) we have observed that the short-time spectral dynamic
range of the speech signal is the single most important
factor that affects the quantization properties. We use two
methods of preprocessing to reduce the spectral dynamic
range and thereby to improve the quantization properties
(11} . In the first method, optimal (linear predictive)
preemphasis is applied to the speech signal which reduces
the spectral dvnamic range by reducing the qeneral spectral
slope. The second method, called the SIGMA method, involves
multiplying the impulse response of the inverse fil er A(z)
by a decaying exponential, which increases the pole
bandwidths, resulting in a reduction of the spectral dynamic
range*. Preprocessing by either of these methods can be
done after the linear prediction analysis, so that it can be
viewed as part of the encoding process.

*I1f, however, a growing exponential is used, the pole
bandwidths would be decreased thus enhancing the formant

peaks in the spectrum and facilitating better formant
tracking [6,7]).

14
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IV. QUANTIZATION PROPERTILES

For the purpose of quantization, two desirable
properties for a parameter set to have are: (a) filter
stability upon quantization and (b) a natural ordering of
the parameters. Property (a) means that the poles of H(z)
continue to be inside the unit circle even after parameter
quantization. By (b) we mean that the parameters exhibit an
inherent ordering, e.qg. the predictor coefficients are

ordered as a A_yeeey ap. I1f a1 and a2 are interchanged

1’ 72

then H(z) is no longer the same in general, thus
illustrating the existence of an ordering. When such an
ordering is present, a statistical study on the distribution
of individual parameters can be wused to develop better
quantization schemes. It is clear that propertv (a) is more
important than (b). Only the poles and the reflection
coefficients ensure stability upon quantization, while all
the sets of parametcrs except the poles possess a natural

ordering. Thus, only the reflection coefficients possess

both of these properties.

We have investigated experimentally the quantization
properties of the sets of parameters discussed in Secvion
II, with and without preprocessing of the speech signal.
The absolute error between the log power spectra of the
unquantized and the quantized linear predictors was used as

a criterion in this study, since we believe that a good

15
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spectral match is necessarv for synthesizing speech with
good qualitv. A summary of the results is provided in the

following.

The impbulse responses {an} and {hn} are highly

susceptible to causing instability of the filter wupon
quantization. This 1is well known from discrete filter
analysis. Positive definiteness of autocorrelation
coefficients {bi} {ri} is not ensured under
quantization, which also 1leads to instabilities in the
lincar prediction filter. An attempt to synthesize speech
with quantized autocorrelation coefficients {ri} resulted in
distinctly perceivable "clicks" ir. the synthesized speech.
Our conclusion is that the impulse responses and
autocorrelation coefficients can be used onlvy under minimal
quantization, in which case the transmission rate would be

excessive.

In the experimental investigation of the spectral and
cepstral parameters, we found that the quantization
properties of these parameters are generallv superior to
those of the impulse responses and autocorrelation
coefficients. The spectral parameters often vield results
comparable to those obtained by quantizing the reflection
coefficients, llowever, for the cases when the spectrum
consists of one or more very sharp peaks (narrow

bandwidths), the effects of quantizing the spectr-1
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coefficients often cause certain regions in the

reconstructed spectrum to become negative, which leads to
instability of the filter. Preprocessing the speech signal

by the SIGMA method remedies this situation, but the
spectral deviation in these regions can be relatively large.
Quantization of cepstral parameters can also lead to
instabilities, As before, with proper preprocessing
stability is restored, but at the eXxpense of increased

spectral deviation.

As mentioned earlier, the stability of the filter H(z)
is quaranteed under quantization of the poles. This makes
the poles potentially a good set of parameters for
transmission. Unfortunately, the poles do not possess a
natural ordering: a property that 1is necessary if a low
transmission rate 1is desired. Traditionally, poles have
been ordered in terms of vocal tract resonances (formants) .
Since the ranges of freauencies for the various formants
have been well established, their quantization can be done
with improved accuracy. In addition, the formant bandwidths
may be quantized less accurately than formant frequencies,
which leads to further savings in transmission rate.
However, experience has shown that the problem of
identifying the poles as ordered formants is computationally
complex and involv~s; a fair amount of decision making which
is not completelv reliable. In addition, computing the

poles requires finding the roots of a pth order polynomial
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(p~12) : not a straightforward task.

Based on the results of our experimental study of the
spectral deviation due to quantization, on computational
considerations, and on stability and natural ordering
properties, we conclnde that the reflection cocfficients are
the best set for use as transmission parameters. The
question now is, what is an optimal quantization scheme for
the reflection coefficients which gives the best results in
terms of the quality of the synthesized speech? To this end,
we perform in the next section a spectral sensitivity
analysis of the reflection coefficients, since we have
assumed that good quality speech depends on an accurate
representation of the power spectrum. Based on the results
of this study we present in Section VI an optimal scheme for

the quantization of the reflection coefficients.

18
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V. SENSITIVITY ANALYSIS OF REFLECTION COEFFICIENTS

In order to understand the effects of parameter
quantization on the all-pole model spectrum, we study in
this section the sensitivity of the spectrum to small
changes in the reflection coefficients. If AS is the
spectral deviation due to a change Aki in the reflection
coefficient ki' then we define the spectral sensitivity for

the coefficient ki as

9S Lim AS
SEi = Aki»o % (19)

1

The definition of spectral deviation AS can be arbitrary,
but for it to be wuseful it must somchow relate in a
proportional maaner to the corresponding effect on
perception of the svnthesized speech. lHere we employ a
measure of spectral deviation that has been found to be
useful in specch research, namely, the average of the
absolute value of the difference between the two log spectra
under consideration. Thus the spectral sensitivity is

defined by

) n
%E_ = Ailfo K%— %F / |log P(ki,w) - log P(ki+Aki,w)|de,
i i i -n

19
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or
: m P(k;,w)
38 Lim _1 |1 grw)
Tk, T akg~0 Bk [ﬁ d \1°9 PRk oT | de| ¢ (20
i i O i i

where

P(-,0) = |u(ej“’)|2

is the spectrum of the all=-pole model H(z). The quantity
between brackets in (20) is the spectral deviation AS due to
a perturbation in the ith reflection coefficient.

Experimentally, 2%— is computed by replacing the integral
a 5

i
by a summation, and by using a sufficiently small value for

Ay
=M. oo

1

Typical sensitivity curves are shown in Figq. 3. (For
display purposes we have plotted 10 log10 %%; in decibels.)
These curves were obtained from a 12-pole linear predictive
analysis of a 20 msec frame from a 10 kHz sampled speech
signal. Each curve in Fig. 3 is a plot of the spectral
sensitivity for one of the 12 reflection coefficients as its
value is varied over the range (-1,1) while the other 11
reflection coefficients are kept constant. We have
performed this type of sensitivity analysis for a large
number of different sounds recorded from different speakers.
The resulting sensitivity curves were similar to those shown

in Fig. 3. The sensitivity curves have the following

20
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24

20
1

12
|

SPECTRAL SENSITIVITY (DB)
16
|

I

-1.06 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0 :
REFLECTION COEFFICIENT,K l

reflection cocfficients of a 1l2-pole analysis
of a 20 msec speech frame.

21

1 Fig. 3. Typical spectral sensitivity curves for the
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properties in common:

(i) Each sensitivity curve %%— versus ki has the same

i
general shape irrespective of the index i and

irrespective of the values of the other

coefficients kn' ngi, at which the sensitivity is

computed,

(ii) Each sensitivity curve is U-shaped. It is
even-svmmetric about ki=0, and has large values
when the magnitude of ki is close to 1 and small

values when the magnitude of ki is close to zero.

It has been observed bv some researchers that the first
few reflection coefficients are the most sensitive to the
effects of quantization. While this is true, it 1is clear
from the results of our sensitivity analysis that the high
sensitivity is not due to the fact that these reflection
coefficients are the leading ones but because on the average

they assume magnitudes closer to 1 than the others.

The sensitivity properties given above strongly suggest
the existence of a prototype sensitivity function which
would apply approximately to every reflection coefficient
and for different speech sounds. Such a prototype function
cnuld then be used in developing an optimal quantization
scheme that would apply to all reflection coefficients all
the time. Due to the above sensitivity properties, it is

meaningful to obtain this prototype sensitivity fuaction as
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the simple average of the sensitivity curves over different
reflection coefficients and for a large number of different
speech sounds. Such an averaged sensitivity function is

defined below:

N
S 1

N

9S8
& .

V) ’ (21)

i
ki k

[ el

sgs
)3

o

1 i=l

where t refers to the number of the analysis frame (time
averaging). The averaged sensitivity function for a
representative speech sample is shown plotted as the solid
curve in Fiag. 4. In this plot the sensitivity values are
given in decibels relative to the sensitivity at k=0. In
the next section, we develop an optimal quantization scheme
for the reflection cocfficients using the averaged

sensitivity function in Fig. 4.

23
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8

20 T

16
AVERAGE
SENSITIVITY

S i
10 LOG 7=

12

RELATIVE SPECTRAL SENSITIVITY (dB)

-1.0 -0.6 0.2 0 02 C.6 1.0
REFLECTION COEFFICIENT k

Fig. 4. Averaged spectral sensitivity curve for the
reflection coefficients (solid line) and an

analvtical function that approximates it i
(dashed line).

24
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VIi. OPTIMAL QUANTIZATIOHN OF REFLECTION COEFFICIENTS

In view of the sensitivity properties of the reflection
coefficients discussed in the previous section and depicted
in Figs. 3 and 4, it is clear that linear quantization of
the reflection coefficients is not satisfactory, especially
when some of them take values close to 1 in magnitude. What
is needed is a nonlinear quantization scheme that is much
more sensitive (has more steps) near +1 than near 0. A
nonlinear quantization of a reflection coefficient is
equivalent to a linear quantization of a different parameter
that is related to the reflection coefficient by a nonlinear
transformation. We define an optimal transformation as one
which results in a transformed parameter that has a flat or
constant spectral sensitivity behavior. We shall now use
the results of the previous section to determine this

optimal transformation.

Denoting the transformed parameter as g, Ve have

g = f(k) (22)

where f£(+) is the underlving nonlinear mapring. The optimal

mapping 1is one where the transformed parameter g has

constant spectral sensitivity, i.e.

%% = I = a constant ,
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where the sensitivity is defined in an analogous manner to

(20). Writing formally,

9S8 dk 98 af (k)
“mzzr""mz/‘ak— ) (24)

&la

Thus, from (23) and (24) we have

daf (k)
—ak

=

9S

o R

Equation (25) provides the condition for a mapping to bhe
optimal. The optimal mapping f(k) is obtained by simply
inteqrating (25). It is clear that (25) may be applied to
each reflection cocfficient separately. However, for the
reasons mentioned in the last section we shall consider the
averaged sensitivity function in Fig. 4 and derive the
mapping that is optimal on the average for all the

reflection coefficients.

Although it is possible to obtain the optimal
transformation bv integrating the solid curve in Fiq. 4
directly, we have found it simpler and ultimately more
useful to approximate the averaged sensitivity curve by a
well specified mathematical function which could then be
integrated to obtain an anproximately optimal f(k). An

experimental fitting of the averaced sensitivity curve in

26
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Fig. 4 has revealed that the function 1/ (1-k2) approximates
the sensitivitv function reasonably well (to within a
multiplicative constant), as shown by the dashed curve in
Fig. 4 (Note that the plot is given in d=cibels). Thus,
from (25), the approximately optimal transformation is given

by

- 1
L(1-k2)

Integrating (26) we obtain

£(k) = 3 log oK (27)

As L is arbitrarv, an interesting transformation is obtained

by substituting L=1/2:

£(k) = log Ik . (28)

From (16), the ratio of consecutive area coefficients is

given by

Therefore, the transformation in (28) is simply the
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logarithm of the area ratios. Thus, we have shown that the
logarithms of the area ratios (henceforth called 1log area
ratios) provide an approximately ontimal set of coefficients

for quantization.

Fiqg. 5 shows sensitivity curves for the loq area ratios
using the same example as in Fia. 3. A comparison of
Figs. 3 and 5 shows that the sensitivity curves are
relatively flat for the log area ratios. Our experimental
investigations into the quality of the synthesized swveech
also indicate that the log area ratios possess good

quantization properties.

Fig. 6 shows a plot of the loq arca ratio as a function
of the reflection coefficient. We have also plotted in
Fig. 6 a linear characteristic that passes through the
intersection of a vertical line at k=0.7 and the loq area
ratio curve. For values of k less than 0.7 in magnitude,
the log area ratio curve is almost linear. Thus, if a
certain reflection coefficient takes values always less than
0.7 in magnitude, one could quantize it linearly to obtain
approxinatelv flat sensitivity characteristics. In wractice
it is found that the reflection coefficients ki, i> 3, have
in general maanitudes less than 0.7. However, use of the
log area ratios automatically leads to the de sired

quantization irrespective of the reflection coefficient and

the range of values it spans.
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Fig. 6. Log area ratio plotted as a function of the

reflection cocfficient(solid line) and a '

| lincar characteristic that intersects it at ’
k=0.7 (dashed line).
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Interpretation in terms of Pole Locations

while the spectral sensitivity measure given by (20) is
useful in quantifving the overall deviation in the spectrun
due to perturbations in the reflection coefficients or the
log area ratios, it does not, however, explain corresponding
deviations in the pole locations of the linear prediction
filter. Mich is known about the reclations between the
accuracy of pole (or formant) locations and the
correspondina effects on speech quality. Therefore, it
would be uscful to examine the pole deviations due to
quantization of the transmiscion paramcters. tnfortunately,
the problem is quite untractalle in gqeneral, However, somne
insight can still be gained bv examining a 2-nole model.
Although it is possible to examine this model in
mathematical terms, herc we shall take a graphical approach

due to Kitawaki and Itakura [12].

For the sccond order linear predictor, the inverse

filter ‘s given bv

-2

-1
A(z) = 1 + kl(1+k2) z + k2 z

The zeros of A(z) are the poles of our model filter H(z).
We shall restrict our discussion to the cases where the

zeros form complex conjugate pairs. From (30) we sce that




BB Report No. 2800 Bolt Beranek and Newman Inc.

A(z) has a complex zcro when

kl 3 {-ll'l] r

2 I 2
2-k1-2 1-k1

k! € ;!__ s 1l - (31)
1

Fig. 7 shows a plot of only the complex zeros  as kl is
varied uniformlv in the interval [-.99, .99) in eaqual steps
of .01 while k, is varied uniformly in the interval [0, .99]

also in cqual stens of .01, Let

1+k
g; = 1log

% , i=1,2, (32)
1

be the loq area ratios corresponding to kl and kz. Fig. 8
depicts the comnlex  zeros of A(z) when a is varied over
(-loq 199, lona 199] and 9, over [0, log 1958 uniformlv and
in equal steps. The total number of steps is kept the same
as in the previous cast. Relative to Fia. 7, Fiq. 8 shows
that there is denser clustering of the zeros near the unit
circle and for anales close to 0 and w. This means that 1in
these reqions, quantization errors in the log area ratios
lead to a smaller deviation in the position of zeros of A(z)
than that obtained by the quantization of the reflection

coefficients, assuming the same number of quantization

levels in both cascs. Fig. 9 shows the complex roots

32
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obtained by a second order linear predictive analysis of
several sentences of speech material sampled at 10 kHz. An
inspection of Figs. 8 and 9 reveals that the roots of the
second order linear predictor for the continnous speech
occur mainly in the areas where there is a dense clustering
of zeros in Fig. 8. We view this as further independent
evidence supporting our earlier findings of the desirable
quantization properties of the log area ratios for the

purpose of speech compression.

Kitawaki and Itakura considered still other nonlinear
mappings of the reflection coefficients but concluded that
the log area ratios lead to the best overall quantization
accuracy [12]. Our results make the stronger statement that
the log area ratios are actually optimal in the sense

discussed earlier.

Optimum Bit Allocation

In the following we investigate the use of the spectral

sensitivity measure for allocating a fixed number of bits

among the wvarious parameters. Let q Aorecer qp be the

parameters chosen for quantization. These may be the
reflection coefficients or the log area ratios or any other
set of parameters. Given the total number of bits for
quantization as M, the problem is to distribute this among

the p parameters as M, l<i<p, in some optimal manner. In
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terms of quantization levels, the above problem may be
restated as the allocation of N = oM jevels among the p
parameters as Ni' 1l<i<p, in some optimal manner. Therefore,

we have

We propose to derive the optimal bit allocation by
minimizina the maximum spectral deviation due to
quantization, The total spectral deviation AS due to
changes Aqi in the parameters 4y, l<i<p, 1is given
approximately by

as

where Ei and qi are the upper and lower bounds on qy.

respectively. Then, for a linear quantization of qi using

round-off arithmetic, the maximum quantization error is
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equal to half the quantization step size:

i 1
|Aqi| g 51 .
max
Thus
(88)pax = B 13a,| TNy (36)
Let
q. - q;
= 1 i |98 l<isp .
Ky 5 5, s 121 (37)
Then
p K.
(As)max ® Z ﬁi ° (38)
i=l i

We wish to minimize (AS)max with respect to {Ni} subject to

the constraint

P
Z log, Ny =M . (39) |
i=1

This is a simple problem in constrained minimization {13])

38
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and its solution is given by

M 1/p
N, = K, = ,
I K.
i=1 1
(40)
Ky .
N, = KI Ny o 2515p -

The bit allocation strateqv given in (40) is thus optimal in
a minimax sense since it minimizes the maximum spectral
deviation due to aquantization, Mcte that if truncation
arithmetic is used, the constants Ki in (37) will he
doubled, but that will not affect the bit allocation results

from (40).

The optimal bit allocation in  (40) effectivelv says
that the contributions of the different parameters to the
maximum spectral deviation in (38) must be erual. We know
that for the loqg area ratios the spectral sensitivity —%%;
is apvroximatelv a constant and is the same for all the
coefficients, From (35), (37) and (40), this implies that
the quantization step size 5i should be the same for all the
log area ratios, which is intuitively clear. For this case,

the bit allocation can be done as follows, Compute the

constant step size § from

P 1/p
b @ - gy
6 = M . (41)
2
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Then the number of levels Ni for each coefficient 1is
computed from (35). We have found it convenient and useful
to begin with a particular step size, That automatically
determines the total number of bits needed, as well as the
maximum spectral deviation which, in turn, determines the
resulting speech quality. One can then study the change in

speech quality as a function of only one variable, namely

the step size.

40
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VII. COMMENTS ON ANOTHER SPECTRAL SENSITIVITY MEASURE

In Section V we introduced a spectral sensitivity
measure to study the quantization properties of the
reflection coefficients. Other types of sensitivity
measures may also be used. In particular we have considered
a measure which is similar to the total-squared error used
for minimization in 1linear predictive analysis. By using
Parseval's theorem in (1), the total-squared error is given

by

where Po(w) is the power spectrum of the input speech signal

and P(w) is the power spectrum of the all-pole filter:

. 2
P(w) = H(eJ‘")‘2 5O .
|A(e3w)‘2

The gain G is given by (9).

Properties of the error measure E have been studied 1in
detail elsewhere [6,7,14]. In particular, the minimization
of E results in an all-pole model spectrum P(w) that is a
good approximation to the envelope of the signal spectrum

Po(w). Because of this property, it seemed reasonable to
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study the use of this error E as a measure of the deviation
between the two spectra. For the sake of normalization we
have chosen to work with an error measure E' obtained from

(42) by eliminating the factor GZ:

' 1 n Pl(w)
E =ﬁ_£w dw , (44)

where Pl(m) and Pz(m) are now any two spectra. Also, the
two spectra are normalized such that they have equal total

energv.

For our study of spectral sensitivity we let
Pl(w)=P(ki,w) and Pz(w)=P(ki+Aki,w), where P(.,w) is given

by (43). The error between the two spectra is then given by

?(kirw) d
w . (45)
P(ki+Aki,w)

' = l—-
E (Aki) 27

3 =

We define the spectral deviation, then, as

As' = log E'(Ak;) . (46)

The definition of the new -.easure of spectral sensitivity

follows from (46) and (45) as

; P(k,,w)

3s’ Lim 1 S i

= o W5 log e f dw . (47)
3k T akg+0 By 2w ! Bk FEk W)

42
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The spectral sensitivity in (47) can be derived
analvtically, without the need to resort to experimental

data as was the case for the study of %%— in (20). This is
i

done below.

E'(Aki) in (45) can be interpreted as the arithmetic
mean of the ratio of the two spectra. For small Aki, the
arithmetic mean is avproximately equal to the geometric

mean, which is given br

1 b P(k )
E"(Aki) = exp | 37 I log P(k +Ak ) dw . (48)

As Aki»O, the arithrmetic mean becomes equal to the geometric

mean. Using this result, we have from (45), (47) and (48),

s’ Lim 1 1 K Plkj,w) dw| . (49)
3k, T oaks0 By [ 2w 199 BT +Ak )

Substituting (9) and (43) in (49), there results

V (k )
9S! Lim 1
3k, < ak-0 K] T f 1°‘=—(E—T—+k

A(k.+bk, ,el")
log & 3 e dw . (50)
Ak, el")

43
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It can be shown [7) that if the zeros of A(z) lie inside the

unit circle, then

k1 "
/ logla(ed)|? dw =0 . (51)
-7

Substituting (51) in (50), and noting that Vp is independent

of w, we obtain

2" Lim log Vp(ki) - log Vp(ki+Aki)
3k, ~ ik, ~+0 ik, ' (52)
i i i
or
as' _ _ 9l(lug Vp(ki)l
ok. dk. *
i i

Using (8) in (52) we obtain the desired result

9S'

(53)

It is important to note that this is an exact result and it

is true for each reflection coefficient, independent of the

38’
%

versus k gives a U-shaped curve. Therefore, the spectral

values of the other coefficients. Also, a plot of

sensitivity in (53) has the same general properties as the
spectral sensitivitv %% obtained experimentally in Section

V. The only difference between the two is the actual shape

44
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of the sensitivity curve.

Substituting (52) in tho optimality condition (25) and

inteqrating it with L=1, we obtain the following optimal

mapping for the sensitivity measure (47):

- w 1
f'(k) = log —3 -
' 1-k

From (8) and (54), it is interesting to observe that f'(ki)

is equal to the logarithm of the ratio of the normalized

errors (or log error ratio) associated with the linear

o predictors of orders i-1 and i,

Vil
£' (k) = log = . (55)
1 i

We have experimentally investigated the quantization

properties resulting from the mappings given by (28) and

(55). Through informal listening tests we have found that

the use of the log area ratios for quantization leads to

uniformly better speech quality than that obtained using the

log error ratios.

only difference

It is interesting to note that the

is the lack of an absolute value si.gn inside the integral in

"nw
-,
-
|
L ]
[ between the two sensitivity measures given by (20) and (49)
‘: 45
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(499 . This makes the sensitivity measure in (49) less
powerful, because spectral deviations when
p(ki'”)>P(ki+Aki'”) can cancel deviations when
P(ki+Aki,w)>P(ki,w). Both of these cases contribute to the
total spectral deviation in (20), This is another reason
why (20) is to be preferred over (49) as a definition of
spectral sensitivity, and therefore why the log area ratios
are to be preferred over the 1log error ratios as
transmission parameters. (See [14] for further comparison

of the spectral deviations in (20) and (47).)

46
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VIII. CONCLUSIONS

We have dealt with the problem of quantizatica of
transmission parameters in linear predictive speech
compression systems., Several alternate sets of transmission
parameters were considered and their relat.ve quantization
properties were presented. The results of this study have
shown that the reflection coefficiants are the best set for
use as transmission parameters. Specifically, the
reflection coefficients preserve the stability of the linear
predictor under quantization, and possess a natural ordering
which property can be used in the desiqi. of better
quantization schemes. The quantization of the reflection
coefficients was then examined in more detail using a

spectral sensitivity measure.

The spectral sensitivity of a given reflection
coefficient was defined in terms of the absolute spectral
deviation due to a small perturbation in the reflection
coefficient. Experimental study of this spectral

sensitivity measure hac shown that a reflection coefficient

has a high sensitivity for magnitudes close to 1 and a low

sensitivity near 0. Further, all the reflection
coefficients have approximately the same sensitivity
behavior, irrespective of the particular speech sound to

which they correspond. A prctotype sensitivity function was
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obtained experimentally by averaging the sensitivity values
over the various reflection coefficients and over a large
number of speech sounds. We have then developed an optimal
quantization procedure for the reflection coefficients,
This consisted of finding a suitable mapping that transforms
the reflection coefficients to a set of parameters having a
flat or constant sensitivity behavior. Using an analytical
function that well approximates the averaged sensitivity of
the reflection coefficients, we demonstrated that the
logarithms of the ratios of area coefficients (or log area
ratios) possess approximately optimal quantization

properties.

An optimal solution was then derived for the problem of
bit allocation among the different parameters. This was
done by minimizing the maximum spectral deviation due tu
quantization. For the 1log area ratios, this optimal
solution reduces to using equal quantization steps for all

the parameters.

Finally, motivated to use an error measure similar to
the one used in linear predictive analysis, we have provided
an alternate definition of spectral sensitivity. An
aralytical evaluation of this spectral sensitivity for the
reflection coefficients has shown that the logarithms of the
ratios of normalized errors of linear predictors of

successive orders (on log error ratios) exhikit optimal
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quantization properties. However, informal listening tests

have indicated that the use of log area ratios

for

quantization leads to better synthesis than the use of lo~

error ratios. This further implies that the definition of

spectral gensicivity that resulted in the log area ratios

gives a superior measurs2 of spectral sensitivity for

purpose of quantization studies.

ACKNOWLEDGMENT

The authors would 1like to thank F. Itakura

bringing his work [12] to their attention.

the

for




BBN Report No. 2800 Bolt Beranek and Newman Inc.

REFFRENCES

[1) Itakura, F. and S. Saito, "Analvsis Synthesis
Telephony based upon the Maximum Likelihood Method,"
Reports of the 6th International Conqgress on Acoustics,
edited by Y. Kohasi, Tokyo, C=5-5, Aua. 21-28, 1968.

[2] Atal, B.S. and S.L. Hanauer, "Speech Analysis and
Synthesis by Linear Prediction of the Speech Wave," J.
Acoust. Soc. Am., vol. 50, pn.637-655, 1971,

[3] Itakura, F., et al., "An Audio Response Unit Based on
Partial Autocorrelation," IFFE Trans. Corn., vol.
coM-20, no. 4, pp. 792-797, Aucust 1972.

[4] Haskew, J.R., J.M. Kelly, and T.H. McKinney, "Results
of a Study of the Linear Prediction Vococder," IELE
Trans. Comm., vol. COM=21, no. 9, pp. 1002-1014,
Sept. 1973.

[5] Markel, J.D. and A.H. Gray, Jr., "A Linear Prediction
Vocoder Sirmnulation Based Upon the Autocorrelation
Method," Trans. Acoustics, Speech and Signal
Processing, vol. ASSP-22, pp. 124-134, April 1974.

[6] Makhoul, J., "Spectral Analvsis of Speech by Linear
Prediction," IFFrE Trans. Audio and Electroacoustice,
vol. AU-21, pp. 140-148, June 1973.

(7] Makhoul, J.I. and J.J. Wolf, "Linear Prediction and
the Spectral Analysis of Speech," BBl Report No. 2304.
Bolt Beranek and Newman Inc.,, Cambridqe, Mass., Auaqust
1972,

[3] Gold, B. and C.M. Rader, Digital Processing of
Signals, McGraw-I11ill, MNew York, 1969,

[9) Wakita, H., "Direct Estimation of the Vocal Tract Shape
by Inverse Filtering of Acoustic Speech Waveforms," IFEF
Trans. Audio and Electroacoustics, vol. AU-21, Dpp.
417-427, Oct. 1973.

[10] Itakura, F. and S. Saito, "On the Optimum Quantization
of Feature Paraneters in the PARCOR Speech
Synthesizer," Conference Record, 1572 Conf. on Speech
Corm. and Processing, Newton, Mass., pp. 434-437,
April 1972,

(11) Makhoul, J. and R. Viswanati:an, "Adaptive Preprocessing
for Linear Predictive Speech Compression Systems,”
Presented at the 86th meeting of the Acoustical Society
of America, Los Angeles, Oct. 30-Nov. 2, 1973.

50




BBN Report No. 2800

Bolt Beranek and Newman Inc.

i [12]) Kitawaki, N. and F. Itakura, "Nonlinear Coding of PARCOR
Coefficients," Meeting of the Acoustic Society of Japan,
: Oct. 1973, pp. 449-450, (in Japanese).

(13) Bryson, A.E., Jr. and Y.C. Ho, Applied Optimal Control,
| Blaisdell Publishing Co., Waltham, Mass., 1969.

(14]) Makhoul, J., "Selective Linear Prediction and Analysis-by-
Synthesis in Speech Analysis," BBN Report No. 2578, Bolt
Beranek and Newman Inc., Cambridge, Mass., April 1974.

|

l 51




dinclassified

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indeximg annotation must be entered when the overall report is classilied)

20, REPORT SECURITY CLASSIFICATION

Unclassified

t ORIGINATING AZTIVITY (Corporate author)

Bolt Beranek and Newman Inc.

2b. GROUP

50 Moulton Street

Cambridge, Mass. 02138

3 REPORT TITLE ,‘D’/) MX BS/O

"Quantization Properties of Transmission Parameters in Linear Predictive
Systems"

4. DESCRIPTIVE NOTES (Type of report and,inclusive dates)

Technical Report

5. AU THORI(S) (First name, middle initial, last name)

John Makhoul

R. Viswanathan

7h. NO. OF REFS

April 1974 51 14

6. REPORT DATE 78. TOTAL NO. OF PAGES

88. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERIS)

DAHC-71-C-0088

b. PROJECT NO.

BBN Report No. 2800
A.I. Report No. 14

(-1 9h. OTHER REPORT NOI(S) (Any other numbers that may be assigned
this report)

d.

10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited

1t. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

t3. ABSTRACT

' Several alternate sets of parameters that represent the linear
predictor are investigated as transmission parameters for linear pre-
dictive speech compression systems. Although each of these sets pro-
vides equivalent information about the linear predictor, their proper-
ties under quantization are different. The results of a comparative
study of the various parameter sets are reported. Specifically it is
concluded that the reflection coefficients are the best set for use as
transmission parameters. A more detailed investigation of the quanti-
zation properties of the reflection coefficients is then carried out
using a spectral sensitivity measure. A method of optimally quantizing
the reflection coefficients is also derived. Using this method it is
demonstrated that logarithms of the ratios of the familiar area func-
tions possess approximately optimal quantization properties. Also, a
solution to the problem of bit allocation among the various parameters
is presented, based on the sensitivity measure. ~

( The use of another spectral sensitivity measure renders logarithms
of the ratios of normalized errors associated with linear predictors
of successive orders as the optimal quantization parameters. Informal
listening tests indicate that the use of log area ratios for quantiza-
tion leads to better synthesis than the use of log error ratios._-

DD ™ 1473 (Pace 1)

S/N 0101-807-6811

Unclassified

Security Classification

A=140%




§ecumy %lusmcltion

14

LINK A LINK B LINR C
KEY WORDS

ROLE wT ROLE wT ROLE wY

Linear Prediction
Speech Compression
Vocoders

Speech Aralysis
Speech Synthesis

r Quantization

Filter Stability
Spectral Sensitivity
Bit Allocation

DD "2V..1473 teac)

S/N 0101-607-6821

Security Classification A-31409




